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We present, here, a detailed and curated map of molecular
interactions taking place in the regulation of the cell cycle by
the retinoblastoma protein (RB/RB1). Deregulations and/or
mutations in this pathway are observed in most human
cancers. The map was created using Systems Biology
Graphical Notation language with the help of CellDesigner
3.5 software and converted into BioPAX 2.0 pathway
description format. In the current state the map contains 78
proteins, 176 genes, 99 protein complexes, 208 distinct
chemical species and 165 chemical reactions. Overall, the
map recapitulates biological facts from approximately 350
publications annotated in the diagram. The network contains
more details about RB/E2F interaction network than existing
large-scale pathway databases. Structural analysis of the
interaction network revealed a modular organization of the
network, which was used to elaborate a more summarized,
higher-level representation of RB/E2F network. The simpli-
fication of complex networks opens the road for creating
realistic computational models of this regulatory pathway.
Molecular Systems Biology 4 March 2008; doi:10.1038/
msb.2008.7
Subject Categories: metabolic and regulatory networks; cell cycle
Keywords: cell-cycle regulation; E2F; RB pathway; RB1; systems-
biology standards
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distribution and reproduction in any medium, provided the
original author and source are credited. Creation of derivative
works ispermittedbut theresultingworkmaybedistributedonly
underthesameorsimilar licencetothisone.Thislicencedoesnot
permit commercial exploitation without specific permission.

Introduction

The cell cycle is the succession of four phases called G1, S, G2
andM. In dividing cells, DNA replication (S phase) andmitosis

(M phase) alternate (Alberts et al, 1994), and are separated by
two gap phases, G1 and G2 phases. In quiescent cells, the cells
are considered to be in G0 phase. When they receive external
signals, such as growth factors, a series of activations push the
cell from a G0 to a G1 state and enters the cell cycle. The whole
process of cell division is mainly orchestrated by complexes
composed of two subunits, a kinase and a cyclin partner. These
complexes phosphorylate a certain number of proteins, either
activating or inhibiting them. Among them, the retinoblasto-
ma tumour suppressor protein RB (RB1) is a key regulator in
cell-cycle entry (transition G1/S). It sequesters a family of
transcription factors, the E2Fs, responsible for the transcrip-
tion of many genes involved in cell-cycle regulation, DNA
replication and other functions like the activation of the
apoptotic pathway (Muller et al, 2001). RB functions as a brake
in the cell cycle, which is releasedwhen external signals trigger
S-phase entry. The main targets of the external signals are the
G1 cyclin/CDK complexes. Once active, the complexes, among
them CycD1/CDK4,6, act as starters of the cell cycle (Novak
et al, 2007) and phosphorylate RB, which then releases E2F
(DeGregori, 2004).
RB is a member of a family of proteins called the pocket

proteins (Knudsen and Wang, 1997). These proteins RB, p107
and p130, share sequence similarities, especially in the ‘pocket
domain’ (Stevaux and Dyson, 2002), which is responsible for
their repressor function. RB protein contains domains where
the binding sites for co-repressors (E2F proteins and viral
oncoproteins) are situated. These sites are subjected to most
mutations.
RB is a tumour suppressor gene. Because of its implication in

so many, if not all, cancers (Sherr and McCormick, 2002), the
study of RB regulation requires a special attention.
More specifically, the RB/E2F pathway is commonly

deregulated in cancer through genetic or epigenetic mechan-
isms, resulting in E2F activation. Several common oncogenes
(involved in many cancer types) are the activators of the
pathway, whereas several common tumour suppressor genes
are inhibitors of the pathway. For example, cyclin D1 (CCND1),
E2F3 and the two cyclin-dependent kinases CDK4 and CDK6
can be activated by translocation, amplification or mutation,
whereas RB (RB1) and the cyclin-dependent kinase inhibitors
p16INK4a (CNKN2A) and p15INK4b (CDKN2B) can be
inactivated by point mutation, homozygous deletion or DNA
methylation. In addition, RB can be inactivated by several
oncogenic viral proteins including E7 from human papilloma-
virus, which is responsible for more than 90% of cervical
carcinomas (Munger et al, 2001). Tumour suppressor gene
inactivation is found not only in sporadic tumours but also in
tumour-prone families. Germline mutations of RB1 results in
retinoblastoma with a high penetrance early in young
individuals and late in life in sarcomas and lung and bladder
carcinomas (Knudson, 1971; Nevins, 2001; Giacinti and
Giordano, 2006). Germinal mutations of p16INK4a results in
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are connected by ‘activation’ and ‘inhibition’ relations. The
information about these relations is derived from the detailed
diagram. For example, in the detailed map, E2F1 is phos-

phorylated by CycA2/CDK2 and is subsequently recognized
for degradation, which is translated in the modular map by
CycA2/CDK2 module inhibiting E2F1-3 module.

Figure 2 The textbook pathway of RB has been expanded by integrating data from the literature. The E2F transcription factors (represented here by single proteins in
the nuclear compartment) are connected by activation and inhibition arrows to their gene targets. (A) Map of target genes of E2F transcription factors. Each E2F
associates with different cofactors to activate or inhibit the transcription of many genes; pointed arrows mean activation and flat arrows mean inhibitions (B) Map of
protein–protein interaction network. Each icon on the diagram represents distinct chemical species. See Kitano and co-workers’ description of CellDesigner’s standard
notation (Kitano et al, 2005) for a detailed meaning of shapes. When the information is available (from Atlas Oncology web-page: www.atlasgeneticsoncology.org/),
tumour suppressor genes and the corresponding proteins are coloured in blue and oncogenes in red, the other proteins are in green. To read and navigate through the
map, visit our webpage: http://bioinfo-out.curie.fr/projects/rbpathway/. The map is clickable and allows easy access to all included information (such as literature
references or standard protein ids) and hyperlinked to other databases.

A comprehensive map of RB/E2F pathway
L Calzone et al

4 Molecular Systems Biology 2008 & 2008 EMBO and Nature Publishing Group

Comprehensive pathway map
Nature Molecular Systems 
Biology 4(173) 2008
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Mathematical model
European journal of biochemistry / 
FEBS 267, no. 6 (2000): 1583-8.
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History (2002)
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History (2003)
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Motivation

Provide a software tool which uses:
SBML as a native file format
solidly defined graphical notation to 
represent biochemical networks

Provide a software tool which can 
integrate with existing resources / 
software tools
support many researchers as possible
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1 min. to run a simulation
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s1

ATP ADP
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CellDesigner
+ +

CellDesigner=

+

Modeling tool for biochemical and 
gene-regulatory network
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SBML (Systems Biology Markup Language)
A machine-readable format (XML) for 
representing computational models in 
systems biology

SBML

Compartment Species Reaction
2011年3月2日水曜日



listOfSpecies listOfReactions listOfCompartments

    cytosol
     nucleus

SBML model

A

B

C

D

A B

C D
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Modifiers: M

Reactants: R

Products: P

‘Kinetic law’:
v = f( R, P, M, parameters )

Reactions according to SBML
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Kinetic law
Describe the behavior of concentration, 
num. of molecules

ODE

1 classical kinetics

A + A → A (1)

v = K[A]2 (2)

d[A]

dt
= −K[A]2 (3)

A + B → 0 (4)

v = K[A][B] (5)

d[A]

dt
= −K[A][B] (6)

d[A]

dt
= R − K[A]2 (7)

R = K[A]2 (8)
1

A

B

C

SSA
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CellDesigner     SBML

<listOfReactions>
  <reaction id="re1" reversible="false" fast="false">
    <listOfReactants>
      <speciesReference species="s1"/>
    </listOfReactants>
    <listOfProducts>
      <speciesReference species="s2"/>
    </listOfProducts>
    <kineticLaw formula=”k*s1”>
    </kineticLaw>
  </reaction>
</listOfReactions>

S2
Biochemical 

reaction
S1

SBML

<listOfSpecies>
  <species id="s1" name="s1" compartment="default" 
initialAmount="0" charge="0"/>
  <species id="s2" name="s2" compartment="default" 
initialAmount="0" charge="0"/>
</listOfSpecies>

k * [S1]

MathML
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Over 200 software packages support SBML
http://sbml.org 

Applications supporting SBML
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A Visual Notation for Network Diagrams in 
Biology
Representation of Biochemical and 
Cellular Processes studied in Systems 
Biology http://sbgn.org

Le Novère N., et al.: The Systems Biology Graphical Notation, Nature 
Biotechnology, 27(8), pp.735-41, (2009)

SBGN
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SBGN
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SBGN
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SBGN

Process Diagram Activity FlowEntity 
Relationship
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SBGN

Process Diagram Activity Flow
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Graphical Notation
Graphical Notation for representing 
biological interactions
protein-protein interaction, gene 
regulatory networks

Kitano, H. et al. "Using process diagrams for the graphical representation 
of biological networks", Nature Biotechnology 23(8), 961 - 966 (2005)
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State transition
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Species type, Reaction type is stored in 
<annotation> for each species, reactions

Layout information is stored separately

<sbml>
  <model>
    <annotation>
        layout information
    </annotation>
    <listOfSpecies>
        <species>
          <annotation>species type</annotation>
        </species>
    </listOfSpecies>
  </model>
</sbml>

SBGN ⇄ SBML
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<celldesigner:speciesAlias compartmentAlias="ca3" id="a1" species="s1">
    <celldesigner:activity>active</celldesigner:activity>
    <celldesigner:bounds h="40.0" w="80.0" x="550.0" y="184.0">
    </celldesigner:bounds>
    <celldesigner:singleLine width="1.0"></celldesigner:singleLine>
    <celldesigner:paint color="ffb3d2ff" scheme="Gradation">
    </celldesigner:paint>
</celldesigner:speciesAlias>

S1

w="80.0"

h="40.0"

(550.0, 184.0)

SBGN ⇄ SBML
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Pure SBML (w/o Graphical Notation)

w/ Graphical Notation

SBGN ⇄ SBML
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CellDesigner 4.1

http://celldesigner.org

SBML support
Graphical notation (SBGN)
Built-in simulator (SBML ODE Solver, COPASI)
Integrate with Analysis tool, other simulators 
through SBW
Database connection
Export to PDF, PNG, etc.
Freely available
Supported Environment

Windows (XP or later)
Mac OS X (Tiger, Leopard)
Linux

2011年3月2日水曜日
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What’s new
SBML L2v4 support
MIRIAM annotation
SBOTerm
SBGN Process Diagram Level-1
Integration with SABIO-RK
Connect to PANTHER
new Plugin API
GUI improvement
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Simulator
SOSLib: SBML ODE Solver Library (Univ. of 
Vienna)

written in ANSI C
call CVODE for integration

COPASI: (Univ. of Manchester, VBI, Univ. of 
Heidelberg)

ODE & Stochastic simulation
Language Bindings

http://sbmlsolver.sf.net/

http://copasi.org/

2011年3月2日水曜日

http://www.tbi.univie.ac.at/~raim/odeSolver/
http://www.tbi.univie.ac.at/~raim/odeSolver/
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Simulation
•Can call SOSlib / COPASI as a solver
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Database connection
Search Database by Notes, Name:

PubMed:  PMID: 123456
Entrez Gene
SGD
DBGET
iHOP
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Database connection
Search Database by Notes, Name:

PubMed:  PMID: 123456
Entrez Gene
SGD
DBGET
iHOP
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Import model from BioModels.net

Database connection
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Database connection
Import model from BioModels.net
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Import model from PANTHER

Database connection
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Database connection
Import model from PANTHER
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Database connection
Import model from PANTHER

2011年3月2日水曜日



SABIO-RK
•Web-accessible database 

•http://sabio.villa-bosch.de/

•Contains information about biochemical 
reactions, related kinetic equations and 
parameters

2011年3月2日水曜日
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CellDesigner ⇔ SABIO RK
•Users can import additional information 

to each object (reaction) on-the-fly

•SBML (Systems Biology Markup Language) 
is used to exchange information

S1 S2

E1

CellDesigner
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CellDesigner ⇔ SABIO RK
•Users can import additional information 

to each object (reaction) on-the-fly

•SBML (Systems Biology Markup Language) 
is used to exchange information

S1
k * [S1]

S2

E1 Name, EC number

kinetic law, parameters,
function / unit definitions

CellDesigner
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Example
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Example
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Example
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Example
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Plugin development
Develop plugin 
on Eclipse
Call plugin from 
[Plugin] menu on 
CellDesigner
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Example Plugin
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Example Plugin
Merge Models & Payao Uploader plugin 
by Samik Ghosh
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Example Plugin
Pathway Classification plugin by 
Hiromu Takizawa and Noriko Hiroi
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Motivation

Provide a software tool which uses:
SBML as a native file format
solidly defined graphical notation to 
represent biochemical networks

Provide a software tool which can 
integrate with existing resources / 
software tools
support many researchers as possible
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Examples

NATURE BIOTECHNOLOGY   VOLUME 24   NUMBER 2   FEBRUARY 2006 137

Depicting signaling cascades
To the editor:
In a paper in the August issue (Nat. 
Biotechnol. 23, 961–966, 2005), Kitano et al. 
discuss the use of process diagrams to map 
signal-transduction cascades. They have 
used the formalism of process diagrams to 
specify pathway maps that are both readable 
and precise, and they have developed a map 
depicting hundreds of species and reactions 
involved in signaling by the epidermal 
growth factor receptor (EGFR)1. However, 
this map, as expansive as it is, omits the vast 
majority of species and reactions that could 
potentially be generated during signaling. We 
submit that comprehensive process diagrams 
for this, or any other signaling system, are 
very likely to be of unmanageable size. 
The reason is combinatorial complexity, a 
hallmark of signal-transduction cascades2–5. 
Although Kitano et al. discuss this problem 
in their paper and suggest some solutions 
(e.g., modules for concise representation of 
subnetworks of a signaling system), we feel 
their solutions are inadequate in that explicit 
representation of all species at some level is 
still required.

Here, we wish to call attention to an 
alternative method of representation that 
we believe better addresses the problem of 
combinatorial complexity. This method 
involves the use of graphical reaction rules 
to represent the protein-protein interactions 
in a system and their consequences6,7. A rule 
illustrates features of species relevant for a 
particular type of reaction that can result 
from a protein-protein interaction, whereas a 
process diagram illustrates individual species 
and reactions.

Before discussing rules further, we should 
clarify the limitations of process diagrams. 
Let us consider the map of Figure 3e in the 
original Kitano et al. paper, which depicts 
18 species and 32 reactions involved in 
EGFR signaling. These species and reactions 
correspond, more or less, to those included 
in the mathematical model of Kholodenko et 
al.8, and they arise from interactions among 
five proteins: EGFR, its ligand epidermal 
growth factor (EGF), the adapters Grb2 and 
Shc, and the guanine nucleotide exchange 

factor Sos. The map, as we will elaborate 
shortly, presents an arguably oversimplified 
picture of signaling events. However, it is 
already challenging to decipher because 
a fairly large number of pictograms and 
intersecting arrows are needed to illustrate 
the various species and reactions. How 
complicated would the map be if it presented 
a more comprehensive picture of signaling?

Interactions of the proteins considered 
in Figure 3e of Kitano et al. can potentially 
generate not tens of species but hundreds 
to thousands of species, and even more 
reactions4,9–11. A focus on the 18 species 
of the map is appropriate only if several 
limiting assumptions hold true. These 
assumptions, upon which the model of 

Kholodenko et al.8 (and derivative models 
such as that of Schoeberl et al.12) are based, 
include the following: first, simultaneous 
phosphorylation of tyrosines of both 
receptors in a ligand-induced receptor 
dimer; second, association of at most one 
adapter with a given receptor dimer at a 
time; and third, no dissociation of receptor 
dimers if receptors are phosphorylated.

In recent work11, we discuss the validity of 
these assumptions and consider the impact 
of relaxing them. The result is an extended 
model for Sos activation that predicts the 
dynamics of a network of 356 species and 
3,749 unidirectional reactions, all of which 
arise from protein-protein interactions 
underlying the map of Kitano et al. 

P

P

P

Process diagram Reaction rule

Other examples of reaction rules

EGFR

EGFR EGFR EGFR EGFR

EGFR EGFR EGFR

P P
P

P P
P

P P

P P

PP

P

P

P

Erb1 ligand Erb1 ligand

Grb2 Grb2
Grb2

Grb2

PI

a

b

Y992

Y1045
Y1068 Y1086

Y1148

Y1173 Y992

Y1045
Y1068 Y1086

Y1148
Y1068

Y1068 Y1068 Y1068 Y1068

Y1068

Y1173P P

Figure 1  A process diagram and three graphical reaction rules drawn using CellDesigner16. (a) The 
process diagram illustrates Grb2 binding to a particular EGFR-containing species: three species and 
two unidirectional reactions are depicted. The adjacent reaction rule, drawn in a style consistent with 
the diagrammatic conventions of Kitano et al., also pertains to Grb2 interaction with EGFR. It is one of 
the rules used to generate our model for EGFR signaling11, and it indicates that Grb2-EGFR association 
via Y1068 in EGFR depends only on phosphorylation of this residue. By convention, it is assumed 
that the interaction represented in a rule is independent of all features not explicitly indicated. Thus, 
multiple species may qualify as reactants in a type of reaction defined by a rule. The exact number of 
reactions generated by the rule depends on the graph grammar of which the rule is a part (that is, the 
rule set and seed species that generate a model)7. Within the scope of our model11, the rule shown 
here generates 312 distinct unidirectional reactions. (b) These reaction rules, which are also included 
in the rule set used to generate our model for EGFR signaling11, represent transphosphorylation of 
one EGFR in a receptor dimer by the neighboring receptor and receptor dephosphorylation, which is 
catalyzed by phosphatases assumed to be present in excess. The left rule indicates that EGFR-catalyzed 
phosphorylation of Y1068 depends on dimerization of EGFR. In contrast, the right rule indicates that 
receptor dephosphorylation is spontaneous and independent of the state of EGFR aggregation. These 
rules generate 144 and 156 reactions, respectively, in our model for EGFR signaling11.

C O R R E S P O N D E N C E

Nature Biotechnology 24
(2) 2006
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We have found that consideration of this 
additional complexity is necessary if the 
model is to make accurate predictions about 
network dynamics and the role of specific 
components, such as individual sites of 
tyrosine phosphorylation11,13.

Drawing a process diagram with 356 
species to represent the interactions of only 
five proteins11 would be inefficient and 
difficult to accomplish or read. Moreover, 
there are no obvious modules that could 
be introduced to simplify the process 
diagram, because the reaction network is 
highly branched11. In any case, a module 
has the drawback that protein-protein 
interactions are either altogether hidden 
(when the module is closed) or obscured 
by the possibly large number of species and 
reactions that can arise from the interactions 
(when the module is open).

Given that protein-protein interactions 
can generate myriad species and reactions 
for combinatorial reasons, what can be done 
to capture the essence of these interactions 
without ignoring their combinatorial 
complexity? To address this problem, 
we have proposed that protein-protein 
interactions and their effects be represented 
in the form of reaction rules that are 
generators of species and reactions14,15. 
More recently, we have introduced graphical 
reaction rules6,7, in which graphs similar to 
the pictograms of process diagrams are used 
to represent features of proteins and protein 
complexes. Graphical rules were introduced 
to allow the connectivity of proteins in a 
complex to be explicitly represented, and 
they also provide a means to comprehensibly 
visualize protein–protein interactions, as 
illustrated in Figure 1.

In summary, process diagrams are useful 
for representing the individual species and 
reactions that can arise in a signaling system. 
However, representation at this microscopic 
level of detail may not be practical. In the face 
of combinatorial complexity, diagrams can 
be overly complicated or hide information 
about protein-protein interactions. An 
alternative approach is to represent not the 
species and reactions resulting from the 
interactions of proteins in a system but rather 
the interactions themselves. This task can be 
accomplished relatively easily using graphical 
reaction rules. A set of rules can be interpreted 
to obtain a mathematical model that accounts 
comprehensively for the species and reactions 
logically consistent with the rules, even when 
large numbers of species and reactions are 
possible7,14,15. We are currently extending the 
BioNetGen software package14,15 to provide 
tools for drawing and interpreting graphical 

reaction rules (http://cellsignaling.lanl.
gov/). In the future, we believe such model-
generation tools will play an important role 
in obtaining a mechanistic understanding 
of cellular information processing and 
in manipulating signaling systems for 
therapeutic and biotechnological purposes.

Michael L. Blinov, Jin Yang, James R. Faeder & 
William S. Hlavacek
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Kitano et al. respond:
The first issue raised by Blinov et al. 
suggests that pathway maps are too 
simplistic to represent the protein 
combinatorial explosion in signal cascades. 
They detail Figure 3e in our article to 
illustrate their point; however, this figure 
was used solely to demonstrate the look-
and-feel of how to represent pathways 
as process diagrams. Therefore, we 
used part of the diagram in a Hanahan 
and Weinberg paper1, which is also a 
pathway extensively used in simulation 
studies2,3. It was not argued that this was 
a comprehensive representation of the 
EGFR pathway. Our recent interaction map 
published in Molecular Systems Biology4 
was intended to be a comprehensive 
EFGR map of experimentally validated 

interactions. We did not enumerate all 
possible interactions and molecular 
states and recognize that there are 
interactions not listed in the map due to 
lack of experimental validation, despite 
theoretical and intuitive possibilities. The 
process diagram is neutral on what should 
be described in the map. It defines the 
graphical representation of an interaction 
map; thus, the oversimplification critique 
does not apply to the process diagram itself 
as construction of these maps relies on 
experimental evidence.

The second issue raised was that 
describing all combinatorial states of 
molecules and resulting complexes would 
result in a combinatorial explosion making 
a rule-based approach more appropriate 
for modeling. We would argue that this 
depends on the intended use of the map. 
The process diagram was motivated by an 
experimentalist’s need partly to represent 
detailed interactions, including residue 
modification state, to improve experimental 
design, and partly to visualize their data in 
the context of a pathway map where each 
combinatorial state has been explicitly 
described, regardless of the level of 
complexity. It is imperative that software 
tools make such complex and large-scale 
maps accessible to users.

Although the rule-based approach 
has attracted much attention as 
a viable approach for dynamical 
simulation5,6, it may not allow users to 
project experimental data on to each 
combinatorial state without expansion. 
As illustrated by Blinov et al. wherever 
the rule-based approach is shown to be 
effective, the process diagram can then 
be used to expand graphical notation to 
represent rules and the network generated 
from the rule. We would like to incorporate 
such features into the process diagram 
and are receptive to constructive critiques 
to create standard graphical notations; to 
this end, we have formed an international 
alliance to standardize graphical notation 
called Systems Biology Graphical Notation 
(http://www.sbgn.org/).
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We present, here, a detailed and curated map of molecular
interactions taking place in the regulation of the cell cycle by
the retinoblastoma protein (RB/RB1). Deregulations and/or
mutations in this pathway are observed in most human
cancers. The map was created using Systems Biology
Graphical Notation language with the help of CellDesigner
3.5 software and converted into BioPAX 2.0 pathway
description format. In the current state the map contains 78
proteins, 176 genes, 99 protein complexes, 208 distinct
chemical species and 165 chemical reactions. Overall, the
map recapitulates biological facts from approximately 350
publications annotated in the diagram. The network contains
more details about RB/E2F interaction network than existing
large-scale pathway databases. Structural analysis of the
interaction network revealed a modular organization of the
network, which was used to elaborate a more summarized,
higher-level representation of RB/E2F network. The simpli-
fication of complex networks opens the road for creating
realistic computational models of this regulatory pathway.
Molecular Systems Biology 4 March 2008; doi:10.1038/
msb.2008.7
Subject Categories: metabolic and regulatory networks; cell cycle
Keywords: cell-cycle regulation; E2F; RB pathway; RB1; systems-
biology standards

This is an open-access article distributed under the terms of
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distribution and reproduction in any medium, provided the
original author and source are credited. Creation of derivative
works ispermittedbut theresultingworkmaybedistributedonly
underthesameorsimilar licencetothisone.Thislicencedoesnot
permit commercial exploitation without specific permission.

Introduction

The cell cycle is the succession of four phases called G1, S, G2
andM. In dividing cells, DNA replication (S phase) andmitosis

(M phase) alternate (Alberts et al, 1994), and are separated by
two gap phases, G1 and G2 phases. In quiescent cells, the cells
are considered to be in G0 phase. When they receive external
signals, such as growth factors, a series of activations push the
cell from a G0 to a G1 state and enters the cell cycle. The whole
process of cell division is mainly orchestrated by complexes
composed of two subunits, a kinase and a cyclin partner. These
complexes phosphorylate a certain number of proteins, either
activating or inhibiting them. Among them, the retinoblasto-
ma tumour suppressor protein RB (RB1) is a key regulator in
cell-cycle entry (transition G1/S). It sequesters a family of
transcription factors, the E2Fs, responsible for the transcrip-
tion of many genes involved in cell-cycle regulation, DNA
replication and other functions like the activation of the
apoptotic pathway (Muller et al, 2001). RB functions as a brake
in the cell cycle, which is releasedwhen external signals trigger
S-phase entry. The main targets of the external signals are the
G1 cyclin/CDK complexes. Once active, the complexes, among
them CycD1/CDK4,6, act as starters of the cell cycle (Novak
et al, 2007) and phosphorylate RB, which then releases E2F
(DeGregori, 2004).
RB is a member of a family of proteins called the pocket

proteins (Knudsen and Wang, 1997). These proteins RB, p107
and p130, share sequence similarities, especially in the ‘pocket
domain’ (Stevaux and Dyson, 2002), which is responsible for
their repressor function. RB protein contains domains where
the binding sites for co-repressors (E2F proteins and viral
oncoproteins) are situated. These sites are subjected to most
mutations.
RB is a tumour suppressor gene. Because of its implication in

so many, if not all, cancers (Sherr and McCormick, 2002), the
study of RB regulation requires a special attention.
More specifically, the RB/E2F pathway is commonly

deregulated in cancer through genetic or epigenetic mechan-
isms, resulting in E2F activation. Several common oncogenes
(involved in many cancer types) are the activators of the
pathway, whereas several common tumour suppressor genes
are inhibitors of the pathway. For example, cyclin D1 (CCND1),
E2F3 and the two cyclin-dependent kinases CDK4 and CDK6
can be activated by translocation, amplification or mutation,
whereas RB (RB1) and the cyclin-dependent kinase inhibitors
p16INK4a (CNKN2A) and p15INK4b (CDKN2B) can be
inactivated by point mutation, homozygous deletion or DNA
methylation. In addition, RB can be inactivated by several
oncogenic viral proteins including E7 from human papilloma-
virus, which is responsible for more than 90% of cervical
carcinomas (Munger et al, 2001). Tumour suppressor gene
inactivation is found not only in sporadic tumours but also in
tumour-prone families. Germline mutations of RB1 results in
retinoblastoma with a high penetrance early in young
individuals and late in life in sarcomas and lung and bladder
carcinomas (Knudson, 1971; Nevins, 2001; Giacinti and
Giordano, 2006). Germinal mutations of p16INK4a results in
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are connected by ‘activation’ and ‘inhibition’ relations. The
information about these relations is derived from the detailed
diagram. For example, in the detailed map, E2F1 is phos-

phorylated by CycA2/CDK2 and is subsequently recognized
for degradation, which is translated in the modular map by
CycA2/CDK2 module inhibiting E2F1-3 module.

Figure 2 The textbook pathway of RB has been expanded by integrating data from the literature. The E2F transcription factors (represented here by single proteins in
the nuclear compartment) are connected by activation and inhibition arrows to their gene targets. (A) Map of target genes of E2F transcription factors. Each E2F
associates with different cofactors to activate or inhibit the transcription of many genes; pointed arrows mean activation and flat arrows mean inhibitions (B) Map of
protein–protein interaction network. Each icon on the diagram represents distinct chemical species. See Kitano and co-workers’ description of CellDesigner’s standard
notation (Kitano et al, 2005) for a detailed meaning of shapes. When the information is available (from Atlas Oncology web-page: www.atlasgeneticsoncology.org/),
tumour suppressor genes and the corresponding proteins are coloured in blue and oncogenes in red, the other proteins are in green. To read and navigate through the
map, visit our webpage: http://bioinfo-out.curie.fr/projects/rbpathway/. The map is clickable and allows easy access to all included information (such as literature
references or standard protein ids) and hyperlinked to other databases.
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Physicochemical modelling of cell signalling pathways
Bree B. Aldridge, John M. Burke, Douglas A. Lauffenburger and Peter K. Sorger

Physicochemical modelling of signal transduction links fundamental chemical and physical principles, prior knowledge about 
regulatory pathways, and experimental data of various types to create powerful tools for formalizing and extending traditional 
molecular and cellular biology.

This review is aimed at biologists interested in mathematical model-
ling of biochemical pathways, but who are relatively unfamiliar with 
the topic. Our discussion focuses on pathways involving ‘signals’ rather 
than metabolites. In this context, physicochemical modelling is a natural 
extension of informal or conceptual pathway modelling. Formal model-
ling is much more powerful in putting molecular detail in a physiological 
context, uncovering principles of biological design and creating dynamic 
repositories of interpretable knowledge. However, to realize this power, 
challenges inherent in construction, verification, calibration, interpreta-
tion and publication of models must be addressed.

MATHEMATICAL MODELS IN MOLECULAR, CELLULAR AND 
DEVELOPMENTAL BIOLOGY
Contemporary molecular, cellular and developmental biology seeks 
to describe physiological processes in terms of gene functions and 
specific molecular mechanism. Medicine and drug discovery add the 
practical goals of understanding disease and developing treatments. 
The ‘component identification’ phase of modern biology is approach-
ing completion, and the sheer size of the cellular ‘parts list’ highlights 
the importance of understanding function, not at the level of single 
genes, but rather at a higher level of abstraction, involving pathways 
and circuits. In many cases, conceptual modelling of biology is at the 
breaking point1 — it is impossible mentally to juggle large pathways 
involving many components. The missing ingredient is mathematics. 
Used appropriately, mathematical models can represent pathways in a 
physically and biologically realistic manner, incorporate a wide vari-
ety of empirical observations, and generate novel and useful hypoth-
eses. Pathway modelling has existed for some time, particularly in 
the field of prokaryotic metabolism2,3, but it remains at an early stage 
of development. It is challenging to construct accurate models and 
establish rigorous links to experimental data (see accompanying arti-
cle by Jaqaman et al. in Nature Rev. Mol. Cell Biol.). This commentary 
is based on the premise that useful models of critical mammalian 
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pathways can nonetheless be constructed using an iterative modify–
measure–mine–model procedure that closely integrates experiment and 
mathematics (Fig. 1).

APPROACHES TO PHYSICOCHEMICAL MODELLING
Physicochemical modelling seeks to describe biomolecular transforma-
tions (such as covalent modification, intermolecular association and 
intracellular localization) in terms of equations derived from estab-
lished physical and chemical theory4–8. These ‘kinetic’ or ‘reaction’ 
models use prior knowledge to make specific molecular predictions 
and work best with pathways in which components and connectivity are 
relatively well established. When prior knowledge is sparse, data-driven 
statistical models are more appropriate (see accompanying article by 
Janes et al. in Nature Rev. Mol. Cell Biol.). Equations in physicochemical 
models refer to identifiable processes (such as catalysis and assembly) 
and parameters have physical interpretation (such as concentration, 
binding affinity, and reaction rate). The models can be viewed as trans-
lations of familiar pathway maps into mathematical form — a process 
that should become easier and more transparent with the adoption of 
common schematic standards9.

The correct mathematical form for a physicochemical model depends 
on the properties of the system being studied and the goals of the model-
ling effort. Ordinary and partial differential equations (ODEs and PDEs) 
are most commonly and both can be cast in either deterministic or sto-
chastic form. Stochastic equations include effects arising from random 
fluctuation around the average behaviour. Currently, the most common 
means of representing biochemical pathways is through a set of coupled 
ODEs (an ODE network). ODE networks represent the rates of produc-
tion and consumption of individual biomolecular species, d[Xi]/dt, in 
terms of mass action kinetics — an empirical law stating that rates of 
a reaction are proportional to the concentrations of the reacting spe-
cies. Each biochemical transformation is therefore represented by an 
elementary reaction with forward and reverse rate constants. Changes 
in localization, a central feature of biological pathways, are represented 
by compartmentalization. Each species is allowed to inhabit one or 
more compartments and to move among the compartments through 
elementary reactions. Compartments are also used to represent assem-
bly of macromolecular complexes and other non-enzymatic changes of 
state. Two fundamental assumptions of the compartmentalized ODE 
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can be introduced as simplified ‘lumped’ rates. At the same time, meta-
bolic and synthetic processes are themselves being subjected to quantita-
tive modelling. Thus, hybrid models can be constructed in which specific 
biological processes are alternately modelled in detail or in aggregate. For 
example, a highly simplified ‘lumped rate’ representation of a detailed 
metabolic model could be embedded in a physicochemical model of 

signal transduction to yield a hybrid. Realistic regulation could be repro-
duced by adding an adjustable parameter to the grouped metabolic model 
that makes metabolism dependent on signalling.

The issue of model granularity also arises with equations representing 
elementary reactions. For example, when a reaction is a hundred times or 
more faster than other reactions, it can be assumed that the fast process 

Pictogram

Pathway diagram

Reaction list Approximations

Differential equations

Figure 3 Steps in physicochemical modelling. A pathway map is a highly 
abstracted pictogram of biomolecules and their interactions. Here, a simple 
linear ligand–receptor–kinase–substrate pathway is depicted. Although the 
pictogram conveys the general information flow in the network, mechanistic 
details required for mathematical modelling are absent. A formal pathway 
diagram drawn with CellDesigner details the reaction network40. Instead of 
representing the kinase as one object (as in the pictogram), each form of 
the kinase, either in complex or alone, is depicted (K, K*, LR*K, and K*S). 
A key challenge in developing a pathway diagram is making choices about 
granularity in number of species and reactions (see text). In this example, the 
receptor is a dimer and each subunit has two phosphorylation sites, yielding 
64 possible ligand–receptor dimer complexes. However, this complexity is 
represented simply by two species: non-active and unphosphorylated (R) and 
ligand-bound, fully phosphorylated (LR*). It should be noted that approaches 
such as rules-based modelling may be preferred to the use of pathway 

diagrams (see text for details). A complete list of reactions is generated from 
the pathway diagram. This list can be automatically produced with several 
specialized software tools (Box 1). For reversible reactions, both forward 
and backward rate constants must be indicated. From the list of reactions, a 
system of differential equations is enumerated using appropriate rate laws, 
such as mass action kinetics, which uses the product of a rate constant 
and the concentrations of the reactants to calculate the reaction rates. 
Simplifying assumptions can be made to reduce the complexity or size of a 
model. The Michaelis-Menten approximation to enzyme–substrate kinetics 
is often applied. This particular rate form assumes rapid equilibrium of an 
intermediate complex (K*S), so that an equilibrium assumption is imposed 
(d[K*S]/dt = 0), thus reducing the number of species in the model. Because 
this is an approximation, its use can alter model behaviour, particularly when 
the intermediate complex does not reach equilibrium or the reaction is tightly 
coupled to other processes25–27.

!"#$%#&'"()*+,-..&&&//01!"#$%#&'"()*+,-..&&&//01 /23/4342&&&/5670645/23/4342&&&/5670645

Nature  Publishing Group ©2006

Examples

2011年3月2日水曜日



Nucleic Acids Research 34, 
2006

Applications for protein sequence–function evolution
data: mRNA/protein expression analysis and coding
SNP scoring tools
Paul D. Thomas*, Anish Kejariwal, Nan Guo, Huaiyu Mi, Michael J. Campbell,
Anushya Muruganujan and Betty Lazareva-Ulitsky

Evolutionary Systems Biology Group, SRI International, 333 Ravenswood Ave., Menlo Park CA 94025, USA

Received February 14, 2006; Revised March 6, 2006; Accepted March 27, 2006

ABSTRACT

The vast amount of protein sequence data now avail-
able, togetherwith accumulatingexperimental knowl-
edge of protein function, enablesmodeling of protein
sequenceandfunctionevolution.ThePANTHERdata-
base was designed to model evolutionary sequence–
function relationships on a large scale. There are a
number of applications for these data, and we have
implemented web services that address three of
them. The first is a protein classification service.
Proteins can be classified, using only their amino
acid sequences, to evolutionary groups at both the
family and subfamily levels. Specific subfamilies,
and often families, are further classified when possi-
ble according to their functions, including molecular
function and the biological processes and pathways
theyparticipate in. The secondapplication, then, is an
expression data analysis service, where functional
classification information can help find biological
patterns in the data obtained from genome-wide
experiments. The third application is a coding single-
nucleotide polymorphism scoring service. In this
case, information about evolutionarily related pro-
teins is used to assess the likelihood of a deleterious
effect on protein function arising from a single sub-
stitution at a specific amino acid position in the
protein. All three web services are available at http://
www.pantherdb.org/tools.

INTRODUCTION

The continued improvements in DNA sequencing technology
are rapidly expanding our knowledge of the genomes and, by
inference (through the genetic code and prediction of open

reading frames), the proteomes of extant species. These DNA
and protein sequences provide detailed information about
molecular evolution. Combined with information about pro-
tein function derived from biochemical and genetic experi-
ments, the molecular evolution data can shed light on the
relationship between protein sequence and function. The
PANTHER database (1,2) was designed to model the relation-
ships between protein sequence and function for all major
protein families, using molecular taxonomy tree building com-
bined with human biological interpretation of the resulting
trees. The trees are used to locate functional divergence events
within protein families that define subfamilies of proteins of
shared function.

The current version of PANTHER (6.0) contains trees for
over 5000 protein families, divided into over 30 000 functional
subfamilies. For each family and subfamily group, a multiple
sequence alignment is constructed that aligns ‘equivalent’
positions (i.e. descended from the same ancestral codon) in
each of the proteins in the group. Each multiple sequence
alignment is then represented as a hidden Markov model
(HMM) that summarizes, for each position, the probabilities
of each of the 20 amino acids appearing (or of insertions and
deletions) at that position in the given group of related
sequences.

The resulting HMM parameters can be used in a number of
scientific applications. We discuss two here. The first is clas-
sification of new sequences. The match between a sequence
and an HMM is given a score by calculating the probability
that the sequence was ‘generated’ by that HMM, and compar-
ing it with the probability that the sequence was generated by a
random HMM of the same length (3). For a new sequence, this
HMM ‘score’ can be calculated for each of the family and
subfamily HMMs, and the sequence is classified as belonging
to same group as the best-scoring HMM (provided that the
score is also statistically significant). In PANTHER, because
each HMM is classified by the functions of its constituent
proteins, protein sequences can be assigned to functional
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the uploaded file, depending on the desired source of the
PANTHER classification data: either the pre-calculated clas-
sifications available on the PANTHER site, or a user-
generated file. For using the pre-calculated PANTHER data,
the file must contain two columns: the first is the gene or
protein identifier, and the second is the numerical value.
For user-specified data, the file must contain three columns:
an arbitrary tracking identifier (e.g. a UniProt identifier or gene
symbol); the PANTHER HMM identifier indicating the clas-
sification of the gene/protein; and the numerical value.

The output of the tool is a list of P-values for each com-
parison between a functional category distribution and the
reference distribution. Each distribution, and how it compares
with the reference distribution, can be viewed graphically from
the output page. We find that this is critical for interpreting the
any deviation between the functional category distribution and
the overall distribution. The genes/proteins in each category
can also be viewed from the output page by clicking on the
listed counts. In addition, for pathways, clicking on the path-
way name will bring up an interactive Java applet that colors
the pathway using a ‘heat map’ derived from the input values
(Figure 3).

Coding SNP scoring service

The non-synonymous SNP scoring service is available
at http://www.pantherdb.org/tools/csnpScoreForm.jsp. The
methodology used to generate the scores is described in detail
in (1) and summarized in (14). Briefly, the method uses a
multiple alignment of a family of protein sequences, together
with information about functional subfamilies within that
family, to estimate the probabilities of different amino acids
occurring at different positions in the protein family. High
probability amino acids are likely to result in a functional
protein, while low probability amino acids are likely to
have a deleterious effect on protein function. We quantify
the likely functional effect with a substitution position-specific
evolutionary conservation (subPSEC) score, calculated as sim-
ply the log of the ratio of the probabilities of the two substi-
tuted amino acids: ln(Psub/Pwt), where Psub is the probability of
the substituted amino acid and Pwt is the probability of the
wild-type amino acid. Smaller (more negative) subPSEC
scores indicate a higher likelihood of being deleterious.
We have recently added a third parameter to the subPSEC
score: the number of independent counts nic, a measure of

A

B

Figure 3. Expression data analysis and visualization on the PANTHERwebsite. (A) Mann–WhitneyU-test results, and (B) CellDesigner (15) diagram of the T-cell
activation signaling pathway from the PANTHER Pathway database (accession P00053, author Adam Douglass). This applet colors proteins according to a ‘heat
map’ calculated from user-input values. Protein components are mapped to PANTHER HMMs. Active forms (dashed-line boxes) and phosphorylated forms (small
circles around the letter ‘P’) of proteins are clearly indicated in the diagram. A total of 107 pathways (mostly signaling pathways) are currently available.
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c-Myc primed mitochondria determine cellular
sensitivity to TRAIL-induced apoptosis
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Oncogenic c-Myc renders cells sensitive to TRAIL-induced
apoptosis, and existing data suggest that c-Myc sensitizes
cells to apoptosis by promoting activation of the mitochon-
drial apoptosis pathway. However, the molecular mecha-
nisms linking the mitochondrial effects of c-Myc to the
c-Myc-dependent sensitization to TRAIL have remained
unresolved. Here, we show that TRAIL induces a weak
activation of procaspase-8 but fails to activate mito-
chondrial proapoptotic effectors Bax and Bak, cytochrome
c release or downstream effector caspase-3 in non-trans-
formed human fibroblasts or mammary epithelial cells.
Our data is consistent with the model that activation of
oncogenic c-Myc primes mitochondria through a mecha-
nism involving activation of Bak and this priming
enables weak TRAIL-induced caspase-8 signals to activate
Bax. This results in cytochrome c release, activation
of downstream caspases and postmitochondrial death-
inducing signaling complex -independent augmentation
of caspase-8-Bid activity. In conclusion, c-Myc-dependent
priming of the mitochondrial pathway is critical for the
capacity of TRAIL-induced caspase-8 signals to activate
effector caspases and for the establishment of lethal
caspase feedback amplification loop in human cells.
The EMBO Journal (2007) 26, 1055–1067. doi:10.1038/
sj.emboj.7601551; Published online 1 February 2007
Subject Categories: signal transduction; differentiation
& death
Keywords: apoptosis; Bcl-2 family; c-Myc; TRAIL

Introduction

The TNF-family death ligands TNF-a, CD95L/FasL and TRAIL
promote apoptosis in many types of tumor and virus-infected
cells. Remarkably, primary or non-transformed cells are often
resistant to the death receptor-induced apoptosis, yet they
express functional receptors for these ligands (LeBlanc and
Ashkenazi, 2003; Fesik, 2005). The death receptor ligands
can promote regression of tumors in vivo, which in part is
attributable to the selective tumor cell killing by these agents.
However, only TRAIL induces tumor regression without

exhibiting significant systemic toxicity in vivo, and currently
both TRAIL and agonistic antibodies to TRAIL receptors are
in clinical trials for the treatment of cancer (Fesik, 2005).
Despite years of intense study, only little is known about
mechanisms that render tumor cells sensitive to TRAIL.

TRAIL kills cancer cells by binding specific cell surface
death receptors, which are TNFRSF10A (DR4) and
TNFRSF10B (DR5). After binding TRAIL, these transmem-
brane receptors form trimeric complexes and assemble a
death-inducing signaling complex (DISC) in their cytosolic
parts (LeBlanc and Ashkenazi, 2003). DISC is a primary
signaling complex in which an adaptor protein FADD medi-
ates recruitment of cysteine protease procaspase-8 to the
receptors. FADD interacts with procaspase-8 through homo-
typic death effector domain interactions and promotes
oligomerization-dependent auto-activation of this caspase.
The active caspase-8 can initiate an apoptotic caspase
cascade. In addition, TRAIL may also induce activation of
other signaling pathways. For example, JNK, p38 MAPK and
IKK/NF-kB kinase pathways are activated downstream of
DISC assembly and caspase-8 activation (Varfolomeev et al,
2005). The kinase pathways may control apoptosis but also
mediate non-apoptotic, for example proliferative or inflam-
matory, effects of death ligands (Algeciras-Schimnich et al,
2002; LeBlanc and Ashkenazi, 2003; Wajant et al, 2003;
Secchiero et al, 2005). The DISC-activated caspase-8 connects
to the downstream apoptotic death machinery in two ways.
In certain cells (Type I), DISC assembly generates large
amounts of active caspase-8, which is sufficient to directly
cleave and activate downstream effector caspases, such as
caspases-3, -6 and -7, that execute the apoptotic death
program. In other cell types (Type II), death receptor-induced
apoptosis requires engagement of the mitochondria-mediated
pathway into the process of cell death (Scaffidi et al, 1998,
1999; Fulda et al, 2002; Rudner et al, 2005). The active
caspase-8 can cleave proapoptotic Bcl-2 family protein Bid
into an active form called truncated Bid (tBid). The tBid, in
turn, recruits the mitochondrial pathway by activating the
distal proapoptotic Bcl-2 family proteins Bax and Bak at the
mitochondrial membranes, which leads to the release of
apoptosis promoting factors such as holocytochrome c (cyt
c), Smac/DIABLO and Omi/HtrA2 from mitochondria to the
cytosol (Lowe et al, 2004). Once released into the cytosol, cyt
c activates via APAF-1/caspase-9 complex effector caspases
that execute apoptosis. TRAIL-induced apoptosis is often
crucially dependent on the intact mitochondrial pathway
(Deng et al, 2002; LeBlanc et al, 2002).

Activation of c-Myc renders primary and non-transformed
cells sensitive to TNF-a, CD95L and TRAIL-induced apoptosis
(Hueber et al, 1997; Klefstrom et al, 1997; Ricci et al, 2004;
Wang et al, 2004). The molecular mechanisms underlying
this apoptotic sensitization are not well understood, but they
may involve an inhibitory action of c-Myc towards TNF-
induced NF-kB activation, which normally counteracts the
apoptotic action of TNF (Klefstrom et al, 1997; You et al,
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which specifically occurred in the cells with c-Myc is due to
formation of high-order Bak complexes (Mikhailov et al,
2003; Ruffolo and Shore, 2003). Therefore, the weak c-Myc-

induced immunostaining may indicate formation of preactive
Bak mono- or oligomers (Zhang et al, 2004). It is notable, that
previous studies have already implicated a role for c-Myc in

Figure 8 Bak is required for apoptotic events induced by c-Myc and TRAIL. (A) Western immunoblot demonstrating lentiviral shRNA silencing
of endogenous Bak in MCF10A-MycERtm cells. Lysates were made after hygromycin selection. (B–D) Bax activation, cyt c release and capase-3
activation were quantitated as described in Figure 1. The graph values in (B, C) represent mean7s.d. of three independent experiments and of
two experiments in (D). (E) The immunoblot shows that c-Myc fails to augment TRAIL-induced processing of procaspase-8 in Bak-deficient
cells. The analyses were performed as in Figure 4.

Figure 9 Mitochondria-priming model. Binding of TRAIL to its cognate receptors induces sublethal level of caspase-8 activity in human
epithelial and fibroblast cells. In healthy cells, this weak caspase-8 activity is insufficient to trigger Bid-mediated Bax or Bak activation.
However, oncogenic c-Myc or specific drugs can preactivate Bak and in these conditions even a weak activation of caspase-8 and Bid fully
activates formation of Bak/Bax complexes, which triggers release of cyt c and subsequently recruits downstream effector caspases.
Downstream effector caspases cleave vital cellular substrates and generate substantially more caspase-8 activity through interchain cleavage,
which results in strong Bid activation. We propose that the onset of such caspase feedback loop represents a phase transition, where apoptosis
becomes a TRAIL-independent cell autonomous process. These mechanisms may have evolved to ensure that the progression of late stage
apoptosis is not dependent on the extracellular availability of death ligands. The model is illustrated in the figure as a process diagram with
graphical notation system (Kitano et al, 2005). The symbols are: closed arrow, state transition; open arrow, translocation; closed arrow and
dotted line, unknown transition; circle-headed line, promotion of transition; solid line surrounding protein complexes, known protein
complexes; dotted line surrounding protein complexes, hypothetical protein complexes; dotted line surrounding single protein, active protein.

c-Myc and TRAIL-Bid axis coactivate Bax and Bak
AI Nieminen et al

The EMBO Journal VOL 26 | NO 4 | 2007 &2007 European Molecular Biology Organization1064
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The soil bacterium Bacillus subtilis forms dormant, robust spores as a tactic to
ensure survival under conditions of starvation. However, the sporulating culture
includes sporulating and non-sporulating cells, because a portion of the cell
population initiates sporulation in wild-type strain. We anticipated that the
population effect must be considered carefully to analyse samples yielding popula-
tion heterogeneity. We first built a mathematical model and simulated for signal
transduction of the sporulation cue to see what mechanisms are responsible for
generating the heterogeneity. The simulated results were confirmed experimentally,
where heterogeneity is primarily modulated by negative feedback circuits, resulting
in generation of a bistable response within the sporulating culture. We also
confirmed that mutants relevant to negative feedback yield either sporulating or
non-sporulating subpopulations. To see the effect of molecular mechanism between
sporulating and non-sporulating cells in distinct manner, metabolome analysis was
conducted using the above mutants. The metabolic profiles exhibited distinct
characteristics with time regardless of whether sporulation was initiated or not.
In addition, several distinct characteristics of metabolites were observed between
strains, which was inconsistent with previously reported data. The results imply that
careful consideration must be made in the interpretation of data obtained from cells
yielding population heterogeneity.

Key words: Bacillus subtilis, heterogeneity, metabolome, sporulation.

Abbreviations: ANOVA, analysis of variance; CE-TOFMS, capillary electrophoresis time-of-flight mass
spectrometry; PCA, principal component analysis.

Phenotypic heterogeneity in clonal populations has been
found in some species of bacteria under certain circum-
stances (1–3). The soil bacterium Bacillus subtilis can
form population heterogeneity during sporulation under
conditions of starvation (4–7). This is achieved by
functions of positive- and negative-feedback loops in
sporulation signal transduction. In cells receiving a
sporulation signal, the phosphorylation of kinases (such
as KinA) is stimulated and the phosphate group is
transferred to Spo0A via phosphorelay (8).
Phosphorylated Spo0A (Spo0A!P) is a master regulator
of sporulation, acting as a transcriptional factor for
sporulation-associated genes. This signal transduction
system is regulated by a complex mechanism involving
multiple positive/negative-feedback loops (9).
Recent theoretical and experimental studies suggest

that intrinsic characteristics of the biological system

generate population heterogeneity [see (10) for a review].
Voigt et al. (11) investigated the dynamics of sin operon
using a mathematical model, and showed that combining
genes from a regulatory protein and its antagonist within
the same operon could lead to diverse regulatory
functions such as bistability, oscillation and pulse
generation. In addition, Iber et al. (12, 13) used the
spoIIA operon as an example to show similar results
while de Jong et al. (9) performed a qualitative simula-
tion, reproducing qualitative characteristics consistent
with these experimental results. Involvement of each
genetic feedback loop is unquestionable, but how to
modulate the scale of subpopulations is still unclear.
It has been a long time since omic approaches were

introduced to investigate cellular dynamics. However,
influence of population heterogeneity on omic data
has never been discussed. We consider that lack of
understanding regarding population heterogeneity
mislead and complicate the interpretations of omic data.
Here we indicate that the population heterogeneity

cannot be ignored in sporulation of B. subtilis population.
At first, we employed a mathematical model to elucidate
the dynamics of Spo0A!P, including the involvement
of both positive and negative feedbacks. Although
experimental data cannot be obtained from quantitative

*To whom correspondence should be addressed. Tel: þ81-235-25-
1447, Fax: þ81-235-25-1450,
E-mail: ohashi@humanmetabolome.com/ohashi@sfc.keio.ac.jp
yPresent addresses: Kotaro Ishii, The University of Tokyo,
Kashiwa, Chiba 277-0000, Japan; Hideaki Nanamiya, Ehime
University, Matsuyama, Ehime 790-8577, Japan.
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The sporulation fraction was defined in terms of colony-
forming units (CFU) per millilitre.
Microscopy and Data Processing—An aliquot (!20 ml)

of culture medium at the sporulation phase was briefly
centrifuged and the supernatant removed. Cells were
washed once in MilliQ water then re-suspended in 2ml
of component A from the SlowFade-Antifade Kit
(Molecular Probes, Inc., OR, USA). A 1 ml aliquot of the
cell suspension was then inoculated onto an agarose
layer on a glass slide and covered with a coverslip.
Microscopic analyses were conducted using an
AxioskopMOT 2 microscope (Carl Zeiss, Göttingen,
Germany) and a CoolSNAP fx CCD camera (Roper
Scientific, Inc., AZ, USA). To detect the fluorescence
of GFPuv, Filter Set 17 (Carl Zeiss) was used. Images
were obtained 40 s after UV excitation. The fluorescence
intensity of individual cells was calculated using
MetaMorph Ver. 4.6 software (Universal Imaging,
Co., PA, USA).
Instrumentation—All capillary electrophoresis time-of-

flight mass spectrometry (CE-TOFMS) experiments
were performed using an Agilent CE Capillary Electro-
phoresis System G1600A (Agilent Technologies, CA,
USA), and an Agilent TOFMS System G1969A. For
system control and data acquisition we used G2201AA
Agilent ChemStation software for CE and Analyst QS for
Agilent TOFMS software.
CE-TOFMS Conditions for Cation Analysis—

Samples were prepared as described in (22).
Separations were carried out on a fused silica capillary
(50 mm i.d. "100 cm total length) using 1M formic acid.
Samples were injected with a pressure injection
of 50mbar for 3 s. The applied voltage was set at
þ30kV and the sheath liquid was prepared as 50%
(v/v) MeOH/H2O. For TOFMS, ions were examined
successively to cover the whole range of m/z values
from 50 through 1,000. The fragmentor voltage was set
at 75V and the skimmer and Oct RFV voltages at 50V
and 125V, respectively. The capillary voltage was set at
4,000V (23).
CE-TOFMS Conditions for Anion/Nucleotide

Analysis—Samples were prepared as described in (22).
Separations were carried out on a fused silica capillary
(50 mm i.d. "100 cm total length) using 50mM ammo-
nium acetate (pH8.5 for anion, and pH7.5 for nucleotide,
respectively). Samples were injected with a pressure
injection of 50mbar for 30 s. The applied voltage was set
at þ30kV and the sheath liquid was prepared as 5-mM
ammonium acetate 50% (v/v) MeOH/H2O. For TOFMS,
ions were examined successively to cover the whole range
of m/z values from 50 through 1,000. The fragmentor
voltage was set at 100V and the skimmer and Oct RFV
voltages at 50V and 200V for anion, and 75V and 200V
for nucleotide, respectively. The capillary voltage was set
at 3,500V (23).
Data Processing—Peak extraction was carried out

using our proprietary software (Sugimoto, unpublished
data) and peak pre-processing was performed according
to the P-BOSS method (24) using Excel 2003 (Microsoft,
WA, USA). Mathematical simulation was conducted
using XPP-AUTO (25). Statistical analyses were per-
formed via MATLAB (Mathworks, MA, USA).

RESULTS AND DISCUSSION

The Negative-feedback Loop Dominates the Threshold
of Sporulation Switch—In cells initiating sporulation,
expression of spo0H, which encodes sporulation-specific
!H, was induced by a reduction in the AbrB level (Fig. 1).
The RNA polymerase that contains !H stimulated the
expression of phosphorelay components, kinA, spo0F and
spo0A, which constitute multiple points of the positive-
feedback loop. Negative-feedback regulation was also
observed in B. subtilis phosphorelay. Expression of the
spo0E gene, which encodes Spo0A!P-specific phospha-
tase, is induced by a reduction in the AbrB level at the
sporulation onset (26). Accordingly, it has been suggested
that phosphorelay is negatively regulated by a solo
feedback system (27).
A mathematical model was created, and the dynamics

of the model were simulated (see Supplementary Data
for detail). The system was characterized by varying two
parameters, the sporulation signal (") and concentration
of Spo0A!P, as illustrated in Fig. 2. The amount of
stimulus required for sporulation switch increased as the
ratio of negative and positive feedback loops, r¼ fN/fP,
increased (Fig. 2A). Comparing the system characteris-
tics by varying the feedback coefficients (fN and fP)
revealed that as the value of fN increased, the bistability
region shifted its operating region dramatically towards
a larger region against the sporulation signal (Fig. 2B),
while fP did not change its operating region sufficiently
(Fig. 2C). These findings indicate that negative feedback,
which is achieved by expression of the spo0E gene,
primarily modulates bistability behaviour.
The function of Spo0E in population heterogeneity

suggested in our mathematical model (Fig. 2A) was
further demonstrated using BEST12014 (spo0E::cat), in
which the negative-feedback loop created by spo0E is
destroyed (r¼ 0 in our model). In this strain, distribution
is excessively biased towards the sporulating subpopula-
tion at T3 (Fig. 3A and C), resulting in sporulation of
495% of the cells. This was consistent with the sporula-
tion frequency at T24. Next, we constructed a strain able

Phosphorelay

Fig. 1. Schematic representation of the phosphorelay
network required for initiation of sporulation in
B. subtilis. The diagram was illustrated using CellDesigner
3.5.1 (37) (http://celldesigner.org), and the notation follows that
proposed by Kitano et al. (38). The networks downstream of
AbrB are simply categorized into positive and negative feedback
loops, the regulation of which is represented by a bold arrow
from Spo0H, and a bold arrow from Spo0E, respectively.
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Abstract

Helicobacter pylori (H. pylori), a gram-negative bacterium, infects the stomach of approximately 50% of the world population.
H. pylori infection is a risk factor for developing chronic gastric ulcers and gastric cancer. The bacteria produce two main cytotoxic
proteins: Vacuolating cytotoxin A (VacA) and Cytotoxin-Associated gene A (CagA). When these proteins enter the host cell they
interfere with the host MAP Kinase and Apoptosis signaling pathways leading to aberrant cell growth and premature apoptosis. The
present study expanded existing quantitative models of the MAP Kinase and Apoptosis signaling pathways to take into account the
protein interactions across species using the CellDesigner tool. The resulting network contained hundreds of differential equations in
which the coefficients for the biochemical rate constants were estimated from previously published studies. The effect of VacA and CagA
on the function of this network were simulated by increasing levels of bacterial load. Simulations showed that increasing bacterial load
affected the MAP Kinase signaling in a dose dependant manner. The introduction of CagA decreased the activation time of mapK
signaling and extended activation indefinitely despite normal cellular activity to deactivate the protein. Introduction of VacA produced a
similar response in the apoptosis pathway. Bacterial load activated both pathways even in the absence of external stimulation. Time
course of emergence of transcription factors associated with cell division and cell death predicted by our simulation showed close
agreement with that determined from a publicly accessible microarray data set of H. pylori infected stomach epithelium. The quantitative
model presented in this study lays the foundation for investigating the affects of single nucleotide polymorphisms (SNPs) on the
efficiency of drug treatment.
r 2007 Elsevier Ltd. All rights reserved.

Keywords: H. pylori; Computational model; MapK; EGF signaling; FasL signaling

1. Introduction

Helicobacter pylori (H. pylori) is a gram-negative
bacterium that inhabits the acidic conditions of the human
stomach in 50% of the world’s population (Hatakeyama
and Brzozowski, 2006). Chronic H. pylori infection is a
major risk factor for gastric ulcers and gastric cancer
(Hatakeyama and Brzozowski, 2006).

H. pylori effects host stomach epithelial cells by
producing two unique cytotoxic proteins: Vacuolating
cytotoxin A (VacA) and Cytotoxin-Associated gene A

(CagA) (Cover and Blanke, 2005; Hatakeyama and
Higashi, 2005). In previously published experimental
studies, VacA has been implicated in hyper-vacuolization,
small molecule leakage and apoptosis (Cover and Blanke,
2005). CagA has been implicated in morphological changes
(‘‘hummingbird’’ phenotype) and induction of the MAP
Kinase pathway (Hatakeyama and Higashi, 2005).
VacA acts as both a trans-membrane channel and a

protein activator (Galmiche et al., 2000; Cover et al., 2003).
VacA associates with planar lipid membranes, such as the
outer cell membrane, vesicles and mitochondrial mem-
branes (Galmiche et al., 2000). When VacA associates with
vesicle membranes it creates a leak channel, which
eventually leads to vesicle swelling (Cover and Blanke,
2005). This hyper-vacuolization is a drastic phenotypic
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2.2. Map Kinase signaling pathway

The Map Kinase signaling pathway equations used in
our study were previously presented by (Bhalla and
Iyengar, 1995). Their mathematical model contained 120
nodes (proteins in various phosphorylation states) and 200
reactions between the nodes. The rate equations used in the
model consisted of simple association reactions and
Michaelis–Menten enzyme kinetics. We used Locus Link
ID comparison to confirm that the nodes in Bhalla and
Iyengar (1995) were actually present in the KEGG Map
Kinase pathway (Kanehisa and Goto, 2000). Moreover, we
were able to confirm the interaction connections between
these nodes of the Map Kinase pathway using the ingenuity

pathway analysis (IPA [www.ingenuity.com]). The rate
equations governing the network nodes and their interac-
tions with H. pylori proteins are presented in the
supplementary information. The Map Kinase parameters
and equations appearing in the supplementary information
were previously published by Bhalla and Iyengar (1995)
and more recently used by Pant and Ghosh (2005a, b).
The equations governing the interaction of the host

signaling networks with the invading H. pylori proteins
used in this study are described in Eqs. (1)–(7) in Table 1.
In these equations the bacterial protein CagA interacts with
GBR-2 and Shp-2 within the Map Kinase pathway (Censini
et al., 2001) and also CagA is phosphorylated at EPIYA
motifs by the host protein SRC Kinase (Naito et al., 2006).

ARTICLE IN PRESS
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Before we start

Please download / install CellDesigner 4.1 
from http://celldesigner.org
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Demonstration
Create new model:

[File] ! [New] ! input title ! [OK]
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Tips
Enable [Grid Snap] will help you draw 
your model much easier
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Create Reaction
Create Protein “A” and “B”
Draw “State transition” arrow from “A” 
to “B”
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Add Anchor Point
Add 2 anchor points to reaction
Drag reaction and anchor point to 
change its shape
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Add Catalysis
Add Protein “C”
Add Catalysis reaction from “C” to the 
reaction
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Set Active State
Select Protein “B”
[Component] ! [Set Active]
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Change Color
Right click on Protein “C”
Select [Change Color & Shape...]
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Compartment
Click [Compartment] icon

Drag mouse cursor to specify its area
Input name of compartment
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Add Residue to Protein
Create new model (test2)
Create Protein “A”
Select Protein “A” in [Proteins] Tab
Click [Edit] button
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Add Residue to Protein
Click [add] button on [Protein] dialog
Input name for the residue (tst1)
Click [Close] button
Click [Update] Button
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Add Residue to Protein
Copy & Paste Protein “A” and then draw 
“State Transition” arrow
Right Click on “A” (right side) and select 
[Change Identity...]
Click residue “tst1” in Dialog
Select [phosphorylated] in modification
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Change Position of Residue
Select Protein “A” in [Proteins] Tab
Click [Edit] button
Click residue “tst1” in Dialog
Drag residue to your favorite position
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Complex
Create new model (test3)
Create Proteins “A” and “B”
Copy & Paste both “A” and “B”
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Complex

Click [Complex] icon and create complex “C”

Drag Protein “A” and “B” into complex C
Draw “Heterodimer Association” arrow
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Gene & RNA
Create new model (test4)
Create gene, RNA and Protein
Draw “Transcription” and “Translation”

See “geneRNA41.xml” for more examples
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Database Connection
Search Database by Name:

SGD
DBGET
iHOP
Entrez Gene
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Database Connection
Search Database by Notes:

PubMed:  PMID: 123456
Entrez Gene: GeneID: 4015
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Import model from BioModels.net
Database Connection
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Database connection
Import model from PANTHER
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Auto Layout
[File] ! [Open] ! samples/MAPK.xml
[Layout] ! [Orthogonal Layout]
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Auto Layout
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Simulation (ex1)
Create following biochemical reaction
Click [Simulation] ! [ControlPanel] 
and call SBML ODE Solver

k = 0.3
A = 0.1
B = 0

d[B]
dt

= k[A]
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Simulation (ex1)
Create new model (ex1)
Create reaction
Right click on the reaction and select 
[Edit KineticLaw...]
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Simulation (ex1)
Click [New] button on [Parameters] tab

Input values as follows:
id: k
name: k
value: 0.3

k = 0.3
A = 0.1
B = 0

d[B]
dt

= k[A]
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Simulation (ex1)
Select parameter “k”
Click top most text field
Click [copy] button
Click [ * ] button
Select Protein “A”
Click top most text field
Click [copy] button

k = 0.3
A = 0.1
B = 0

d[B]
dt

= k[A]
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Simulation (ex1)
Double click [initialQuantity] column for 
Protein “A”

Set value as 0.1 d[B]/d[t] = k * [A]

k = 0.3
A = 0.1
B = 0
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Simulation (ex1)
Click [Simulation] ! [ControlPanel]
Set [End Time] to 20
Click [Execute] button
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Equation → Network

dA

dt
= −k1A

dB

dt
= −k2B

dC

dt
= k1A + k2B − k3C

dD

dt
= k3C

A

B

C

D
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Circadian clock model

•Protein (P) inhibits transcription of mRNA (M)

•M is translated to Protein (R)

•P / R will be transported to cytosol / nucleus

J. theor. Biol. (2002) 216, 
193–208
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Circadian clock model
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Circadian clock model
a = s = d = v = 1.0

u = 0.1
h = 0.01
n = 40

0.1

0.5

0.5

0.5

1 / (1+ pow(P/h, n))

uR dR

vP
sM

aM
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Circadian clock model
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Circadian clock model

mRNA

R
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Summary
Introduction of CellDesigner

What kind of model you can build
SBML (Systems Biology Markup 
Language)
SBGN (Graphical Notation)

How to build a model with CellDesigner
Pathway map
Mathematical model
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Simulation (ex2)
Create following biochemical reactions
Execute simulation from [ControlPanel]

A = 0.5

B = 0.2

k1 * A * B
k1 = 0.3

C = 0.01 D = 0.02

E = 0

F = 0

k2 * C k3 * D
k3 = 0.6k2 = 0.01

0 < t < 100
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Simulation (ex2)
Change parameter k1 to 30.0

A = 0.5

B = 0.2

k1 * A * B
k1 = 0.3

C = 0.01 D = 0.02

E = 0

F = 0

k2 * C k3 * D
k3 = 0.6k2 = 0.01

0 < t < 100

k1 = 30.0

k1 = 0.3 k1 = 30.0
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Simulation (ex2)
Click [Parameters] tab
Double click [Value] column for k1
Change parameter k1 to 30.0
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Simulation (ex2)
Click [Interactive Simulation] tab
Click [Parameter value] radio button
Click [Define Range] button
Click [Max] column for k1 and set value as 3.0

Drag sliderbar for k1
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Exercise
Create following model on CellDesigner

re1
re2

re3 re4

re6

re10 re9

re8re7

re5

2011年3月2日水曜日



Kinetic Law
Reaction Rate

re1 V1 * MKKK / ((1 + MAPK_PP / Ki) * (k1 + MKKK))

re2 V2 * MKKK_P / (KK2 + MKKK_P)

re3 k3 * MKKK_P * MKK / (KK3 + MKK)

re4 k4 * MKKK_P * MKK_P / (KK4 + MKK_P)

re5 V5 * MKK_PP / (KK5 + MKK_PP)

re6 V6 * MKK_P / (KK6 + MKK_P)

re7 k7 * MKK_PP * MAPK / (KK7 + MAPK)

re8 k8 * MKK_PP * MAPK_P / (KK8 + MAPK_P)

re9 V9 * MAPK_PP / (KK9 + MAPK_PP)

re10 V10 * MAPK_P / (KK10 + MAPK_P)
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Initial Value & Parameters
Species value

MKKK 90

MKKK_P 10

MKK 280

MKK_P 10

MKK_PP 10

MAPK 280

MAPK_P 10

MAPK_PP 10

Parameter value
V1 2.5
Ki 9.0
k1 10.0
V2 0.25
KK2 8.0
k3 0.025
KK3 15.0
k4 0.025
KK4 15.0
V5 0.75
KK5 15.0

Parameter value
V6 0.75
KK6 15.0
k7 0.025
KK7 15.0
k8 0.025
KK8 15.0
V9 0.5
KK9 15.0
V10 0.5
KK10 15.0
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Simulation Result
End Time: 4000
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